当前深度学习领域主要有哪些前沿回归任务模型


yaogod
yaogod 2024-03-08 01:02:59 67643
分类专栏: 问答

网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。

本文链接:https://www.xckfsq.com/news/show.html?id=52179
赞同 0
评论 1 条
  • 1843880570 2024-03-08 09:05:53

    玻尔兹曼机

    玻尔兹曼机是学习任意概率分布的连接主义方法,使用最大似然原则进行学习。

    受限玻尔兹曼机

    受限玻尔兹曼机 (Restricted Boltzmann Machines, RBM) 是马尔可夫随机场的一种特殊类型,包含一层随机隐藏单元,即潜变量和一层可观测变量。

    Hinton 和 Salakhutdinov(2011) 提出了一种利用受限玻尔兹曼机 (RBM) 进行文档处理的深度生成模型。

    深度信念网络

    深度信念网络 (Deep Belief Networks, DBN) 是具有多个潜在二元或真实变量层的生成模型。

    Ranzato 等人 (2011) 利用深度信念网络 (deep Belief Network, DBN) 建立了深度生成模型进行图像识别。

    深度朗伯网络

    Tang 等人 (2012) 提出了深度朗伯网络 (Deep Lambertian Networks,DLN),它是一个多层次的生成模型,其中潜在的变量是反照率、表面法线和光源。DLNis 是朗伯反射率与高斯受限玻尔兹曼机和深度信念网络的结合。

    生成对抗网络

    Goodfellow 等人 (2014) 提出了生成对抗网络 (generate Adversarial Nets, GAN),用于通过对抗过程来评估生成模型。GAN 架构是由一个针对对手(即一个学习模型或数据分布的判别模型)的生成模型组成。Mao 等人 (2016)、Kim 等人 (2017) 对 GAN 提出了更多的改进。

    Salimans 等人 (2016) 提出了几种训练 GANs 的方法。

    1. 拉普拉斯生成对抗网络
      Denton 等人 (2015) 提出了一种深度生成模型 (DGM),叫做拉普拉斯生成对抗网络 (LAPGAN),使用生成对抗网络 (GAN) 方法。该模型还在拉普拉斯金字塔框架中使用卷积网络。

    循环支持向量机

    Shi 等人 (2016a) 提出了循环支持向量机 (RSVM),利用循环神经网络 (RNN) 从输入序列中提取特征,用标准支持向量机 (SVM) 进行序列级目标识别。

    赞同 1 反对 0
    回复

yaogodL1
粉丝 0 发表 2 + 关注 私信
上周热门
银河麒麟添加网络打印机时,出现“client-error-not-possible”错误提示  1326
银河麒麟打印带有图像的文档时出错  1239
银河麒麟添加打印机时,出现“server-error-internal-error”  1026
统信桌面专业版【如何查询系统安装时间】  954
统信操作系统各版本介绍  947
统信桌面专业版【全盘安装UOS系统】介绍  906
麒麟系统也能完整体验微信啦!  892
统信【启动盘制作工具】使用介绍  502
统信桌面专业版【一个U盘做多个系统启动盘】的方法  444
信刻全自动档案蓝光光盘检测一体机  389
本周热议
我的信创开放社区兼职赚钱历程 40
今天你签到了吗? 27
信创开放社区邀请他人注册的具体步骤如下 15
如何玩转信创开放社区—从小白进阶到专家 15
方德桌面操作系统 14
我有15积分有什么用? 13
用抖音玩法闯信创开放社区——用平台宣传企业产品服务 13
如何让你先人一步获得悬赏问题信息?(创作者必看) 12
2024中国信创产业发展大会暨中国信息科技创新与应用博览会 9
中央国家机关政府采购中心:应当将CPU、操作系统符合安全可靠测评要求纳入采购需求 8

添加我为好友,拉您入交流群!

请使用微信扫一扫!