ML之RF&DT:利用RF(RFR)、DT(DTR)两种算法实现对boston(波士顿房价)数据集进行训练并预测
目录
1、两种算法的预测结果
2、回归树的可视化
- boston_house = load_boston()
-
- boston_feature_name = boston_house.feature_names
- boston_features = boston_house.data
- boston_target = boston_house.target
-
- print('boston_feature_name','\n',boston_feature_name)
- print('boston_features[:5,:]','\n',boston_features[:5,:])
- print('boston_target','\n',boston_target[:10])
-
-
- RFR = RandomForestRegressor(n_estimators=15)
- RFR = RFR.fit(boston_features, boston_target)
-
- RFR_result=RFR.predict(boston_features)
- print('RFR_result','\n',RFR_result[:10])
-
网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。
添加我为好友,拉您入交流群!
请使用微信扫一扫!