Dataset之Fashion-MNIST:Fashion-MNIST数据集简介、下载、使用方法之详细攻略
目录
、
Fashion-MNIST数据集是德国Zalando公司提供的衣物图像数据集,包含60,000个样本的训练 集和10,000个样本的测试集。每个样本都是 28x28灰度图像,与10个类别的标签相关联。Fashion-MNIST数据集旨在作为原始MNIST数据集的直接替代品,用于对机器学习算法进行基准测试。
Name | Content | Examples | Size | Link | MD5 Checksum |
---|---|---|---|---|---|
train-images-idx3-ubyte.gz | training set images | 60,000 | 26 MBytes | Download | 8d4fb7e6c68d591d4c3dfef9ec88bf0d |
train-labels-idx1-ubyte.gz | training set labels | 60,000 | 29 KBytes | Download | 25c81989df183df01b3e8a0aad5dffbe |
t10k-images-idx3-ubyte.gz | test set images | 10,000 | 4.3 MBytes | Download | bef4ecab320f06d8554ea6380940ec79 |
t10k-labels-idx1-ubyte.gz | test set labels | 10,000 | 5.1 KBytes | Download | bb300cfdad3c16e7a12a480ee83cd310 |
论文:https://arxiv.org/pdf/1708.07747.pdf
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
GitHub:https://github.com/zalandoresearch/fashion-mnist
其他介绍:http://www.worldlink.com.cn/zh_tw/osdir/fashion-mnist.html
论文介绍了Fashion-MNIST,一种时尚产品图像数据集,旨在代替mnist,同时为基准机器学习算法提供一种更具挑战性的替代方法。Fashion-MNIST中的图像被转换为与mnist数据集相匹配的格式,使其立即与任何能够与原始mnist数据集一起工作的机器学习包兼容。
The original MNIST dataset contains a lot of handwritten digits. Members of the AI/ML/Data Science community love this dataset and use it as a benchmark to validate their algorithms. In fact, MNIST is often the first dataset researchers try. "If it doesn't work on MNIST, it won't work at all", they said. "Well, if it does work on MNIST, it may still fail on others."
git clone git@github.com:zalandoresearch/fashion-mnist.git
- 'Use utils/mnist_reader in this repo'
-
- import mnist_reader
- X_train, y_train = mnist_reader.load_mnist('data/fashion', kind='train')
- X_test, y_test = mnist_reader.load_mnist('data/fashion', kind='t10k')
- from tensorflow.examples.tutorials.mnist import input_data
- data = input_data.read_data_sets('data/fashion')
-
- data.train.next_batch(BATCH_SIZE)
-
- ata = input_data.read_data_sets('data/fashion', source_url='http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/')
网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。
添加我为好友,拉您入交流群!
请使用微信扫一扫!