NLP之TFTS读入数据:TF之TFTS读入时间序列数据的几种方法


贪玩给篮球
贪玩给篮球 2022-09-19 16:23:59 66492
分类专栏: 资讯

NLP之TFTS读入数据:TF之TFTS读入时间序列数据的几种方法

目录

T1、从Numpy 数组中读入时间序列数据

T2、从csv文件中读入时间序列数据


T1、从Numpy 数组中读入时间序列数据

1、设计思路

2、输出结果

  1. {'times': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
  2. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
  3. 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
  4. 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
  5. 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
  6. 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
  7. 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
  8. 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
  9. 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
  10. 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
  11. 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
  12. 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,
  13. 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,
  14. 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,
  15. 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194,
  16. 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,
  17. 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,
  18. 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
  19. 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246,
  20. 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
  21. 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272,
  22. 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285,
  23. 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298,
  24. 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311,
  25. 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324,
  26. 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337,
  27. 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350,
  28. 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363,
  29. 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376,
  30. 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389,
  31. 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402,
  32. 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415,
  33. 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428,
  34. 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441,
  35. 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454,
  36. 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467,
  37. 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480,
  38. 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493,
  39. 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506,
  40. 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519,
  41. 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532,
  42. 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545,
  43. 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558,
  44. 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571,
  45. 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584,
  46. 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597,
  47. 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610,
  48. 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623,
  49. 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636,
  50. 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649,
  51. 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662,
  52. 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675,
  53. 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688,
  54. 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701,
  55. 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714,
  56. 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727,
  57. 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740,
  58. 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753,
  59. 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766,
  60. 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779,
  61. 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792,
  62. 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805,
  63. 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818,
  64. 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831,
  65. 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844,
  66. 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857,
  67. 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870,
  68. 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883,
  69. 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896,
  70. 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909,
  71. 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922,
  72. 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935,
  73. 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948,
  74. 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961,
  75. 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974,
  76. 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987,
  77. 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]), 'values': array([[ -1.61520834e-01],
  78. [ -1.20098371e-01],
  79. [ 4.83943258e-02],
  80. ……
  81. [ 4.99396130e+00],
  82. [ 4.91760246e+00]])}
  83. one_batch_data: {'times': array([[11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
  84. [52, 53, 54, 55, 56, 57, 58, 59, 60, 61]]), 'values': array([[[ 0.2116637 ],
  85. [ 0.35786912],
  86. [ 0.46659477],
  87. [ 0.47641276],
  88. [ 0.69212934],
  89. [ 0.38971264],
  90. [ 0.75060135],
  91. [ 0.67389518],
  92. [ 0.79628369],
  93. [ 0.66315587]],
  94. [[ 1.37931288],
  95. [ 1.20433465],
  96. [ 1.25861198],
  97. [ 1.22299998],
  98. [ 1.07184071],
  99. [ 1.29255228],
  100. [ 1.125529 ],
  101. [ 1.13725779],
  102. [ 1.37877491],
  103. [ 1.05761771]]])}

T2、从csv文件中读入时间序列数据

1、设计思路

2、输出结果

csv文件内容
  1. {'times': array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  2. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
  3. 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,

网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。

本文链接:https://www.xckfsq.com/news/show.html?id=3567
赞同 0
评论 0 条
贪玩给篮球L1
粉丝 0 发表 13 + 关注 私信
上周热门
银河麒麟添加网络打印机时,出现“client-error-not-possible”错误提示  1326
银河麒麟打印带有图像的文档时出错  1239
银河麒麟添加打印机时,出现“server-error-internal-error”  1026
统信桌面专业版【如何查询系统安装时间】  954
统信操作系统各版本介绍  947
统信桌面专业版【全盘安装UOS系统】介绍  906
麒麟系统也能完整体验微信啦!  892
统信【启动盘制作工具】使用介绍  502
统信桌面专业版【一个U盘做多个系统启动盘】的方法  444
信刻全自动档案蓝光光盘检测一体机  389
本周热议
我的信创开放社区兼职赚钱历程 40
今天你签到了吗? 27
信创开放社区邀请他人注册的具体步骤如下 15
如何玩转信创开放社区—从小白进阶到专家 15
方德桌面操作系统 14
我有15积分有什么用? 13
用抖音玩法闯信创开放社区——用平台宣传企业产品服务 13
如何让你先人一步获得悬赏问题信息?(创作者必看) 12
2024中国信创产业发展大会暨中国信息科技创新与应用博览会 9
中央国家机关政府采购中心:应当将CPU、操作系统符合安全可靠测评要求纳入采购需求 8

添加我为好友,拉您入交流群!

请使用微信扫一扫!