DL之Encoder-Decoder:Encoder-Decoder结构的相关论文、设计思路、关键步骤等配图集合之详细攻略


蜜糖
蜜糖 2022-09-19 16:22:52 64145
分类专栏: 资讯

DL之Encoder-Decoder:Encoder-Decoder模型的相关论文、设计思路、关键步骤等配图集合之详细攻略

目录

Encoder-Decoder模型的相关论文

Encoder-Decoder模型的设计思路

Encoder-Decoder模型的关键步骤


Encoder-Decoder模型的相关论文

1、Encoder-Decoder 结构做机器翻译任务的更多细节,可以参考 原始论文《Learning Phrase Representations using RNN Encoder– Decoder for Statistical Machine Translation》
论文地址:https://arxiv.org/pdf/1406.1078.pdf

Encoder-Decoder模型的设计思路

Abstract:In this paper, we propose a novel neural network model called RNN Encoder– Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixedlength vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs computed by the RNN Encoder–Decoder as an additional feature in the existing log-linear model. Qualitatively, we show that the proposed model learns a semantically and syntactically meaningful representation of linguistic phrases.

1、An illustration of the proposed RNN Encoder–Decoder.

2、An illustration of the proposed hidden activation function. The update gate z selects whether the hidden state is to be updated with a new hidden state h˜. The reset gate r decides whether the previous hidden state is ignored. See Eqs. (5)–(8) for the detailed equations of r, z, h and h˜.

3、: BLEU scores computed on the development and test sets using different combinations of approaches. WP denotes a word penalty, where we penalizes the number of unknown words to neural networks.

4、2–D embedding of the learned word representation. The left one shows the full embedding space, while the right one shows a zoomed-in view of one region (color–coded). For more plots, see the supplementary material.

5、2–D embedding of the learned phrase representation. The top left one shows the full representation space (5000 randomly selected points), while the other three figures show the zoomed-in view of specific regions (color–coded).

Encoder-Decoder模型的关键步骤

1、E-D整体结构

2、E-D步骤解释

网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。

本文链接:https://www.xckfsq.com/news/show.html?id=3559
赞同 0
评论 0 条
蜜糖L2
粉丝 0 发表 17 + 关注 私信
上周热门
银河麒麟添加网络打印机时,出现“client-error-not-possible”错误提示  1448
银河麒麟打印带有图像的文档时出错  1365
银河麒麟添加打印机时,出现“server-error-internal-error”  1151
统信桌面专业版【如何查询系统安装时间】  1073
统信操作系统各版本介绍  1070
统信桌面专业版【全盘安装UOS系统】介绍  1028
麒麟系统也能完整体验微信啦!  984
统信【启动盘制作工具】使用介绍  627
统信桌面专业版【一个U盘做多个系统启动盘】的方法  575
信刻全自动档案蓝光光盘检测一体机  484
本周热议
我的信创开放社区兼职赚钱历程 40
今天你签到了吗? 27
信创开放社区邀请他人注册的具体步骤如下 15
如何玩转信创开放社区—从小白进阶到专家 15
方德桌面操作系统 14
我有15积分有什么用? 13
用抖音玩法闯信创开放社区——用平台宣传企业产品服务 13
如何让你先人一步获得悬赏问题信息?(创作者必看) 12
2024中国信创产业发展大会暨中国信息科技创新与应用博览会 9
中央国家机关政府采购中心:应当将CPU、操作系统符合安全可靠测评要求纳入采购需求 8

添加我为好友,拉您入交流群!

请使用微信扫一扫!