Pytorch很灵活,支持各种OP和Python的动态语法。但是转换到onnx的时候,有些OP(目前)并不支持,比如torch.cross
。这里以一个最小化的例子来演示这个过程,以及对应的解决办法。
考虑下面这个简单的Pytorch转ONNX的例子:
# file name: pytorch_cross_to_onnx.py
import torch
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv = nn.Conv2d(3, 10, 3, stride=1)
def forward(self, x):
x = torch.cross(x, x)
y = self.conv(x)
return y
model = MyModel()
dummy_input = torch.randn(1, 3, 224, 224, device="cpu")
input_names = ["x"]
output_names = ["y"]
# opset_version 选择范围:[7,15]
torch.onnx.export(
model,
dummy_input,
"my_model.onnx",
input_names=input_names,
output_names=output_names,
opset_version=14
)
运行这个脚本,会报下面的错误:
$ python3 pytorch_cross_to_onnx.py
Traceback (most recent call last):
File "pytorch_cross.py", line 25, in <module>
torch.onnx.export(model, dummy_input, "my_model.onnx", input_names=input_names, output_names=output_names, opset_version=14)
File "/usr/local/lib/python3.7/site-packages/torch/onnx/__init__.py", line 320, in export
custom_opsets, enable_onnx_checker, use_external_data_format)
File "/usr/local/lib/python3.7/site-packages/torch/onnx/utils.py", line 111, in export
custom_opsets=custom_opsets, use_external_data_format=use_external_data_format)
File "/usr/local/lib/python3.7/site-packages/torch/onnx/utils.py", line 729, in _export
dynamic_axes=dynamic_axes)
File "/usr/local/lib/python3.7/site-packages/torch/onnx/utils.py", line 501, in _model_to_graph
module=module)
File "/usr/local/lib/python3.7/site-packages/torch/onnx/utils.py", line 216, in _optimize_graph
graph = torch._C._jit_pass_onnx(graph, operator_export_type)
File "/usr/local/lib/python3.7/site-packages/torch/onnx/__init__.py", line 373, in _run_symbolic_function
return utils._run_symbolic_function(*args, **kwargs)
File "/usr/local/lib/python3.7/site-packages/torch/onnx/utils.py", line 1028, in _run_symbolic_function
symbolic_fn = _find_symbolic_in_registry(domain, op_name, opset_version, operator_export_type)
File "/usr/local/lib/python3.7/site-packages/torch/onnx/utils.py", line 982, in _find_symbolic_in_registry
return sym_registry.get_registered_op(op_name, domain, opset_version)
File "/usr/local/lib/python3.7/site-packages/torch/onnx/symbolic_registry.py", line 125, in get_registered_op
raise RuntimeError(msg)
RuntimeError: Exporting the operator cross to ONNX opset version 14 is not supported. Please feel free to request support or submit a pull request on PyTorch GitHub.
注意最后一句的报错:
RuntimeError: Exporting the operator cross to ONNX opset version 14 is not supported. Please feel free to request support or submit a pull request on PyTorch GitHub.
也就是说目前版本是不支持torch.cross
转onnx的,同时提示你”feel free” 去Pytorch 的 GitHub 上提交/贡献一个转换操作。不过2020年03月就有人提了issue,至今仍没有g官方的解决方案。
上面的issue里有人给出了解决思路,就是用元素相乘替代cross
操作。具体来说,实现如下:
def my_cross(x, y, dim=1):
assert x.dim() == y.dim() and dim < x.dim()
return torch.stack(
(
x[:, 1, ...] * y[:, 2, ...] - x[:, 2, ...] * y[:, 1, ...],
x[:, 2, ...] * y[:, 0, ...] - x[:, 0, ...] * y[:, 2, ...],
x[:, 0, ...] * y[:, 1, ...] - x[:, 1, ...] * y[:, 0, ...],
),
dim=dim,
)
注意:这里是以dim=1为例写的实现,如果是在别的维度进行cross操作,需要修改dim参数,同时修改对应stack的维度。
同时在Pytorch doc网站上看到,如果torch.cross
不指定dim
参数的话,默认是从前往后找第一个维度为3的维度,因此这个可能是你所不期望的,建议显式指定这个参数。
因此总结下来,下面是修改后的代码:
import torch
import torch.nn as nn
def my_cross(x, y, dim=1):
assert x.dim() == y.dim() and dim < x.dim()
return torch.stack(
(
x[:, 1, ...] * y[:, 2, ...] - x[:, 2, ...] * y[:, 1, ...],
x[:, 2, ...] * y[:, 0, ...] - x[:, 0, ...] * y[:, 2, ...],
x[:, 0, ...] * y[:, 1, ...] - x[:, 1, ...] * y[:, 0, ...],
),
dim=dim,
)
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv = nn.Conv2d(3, 10, 3, stride=1)
def forward(self, x):
# x = torch.cross(x, x)
x = my_cross(x, x)
y = self.conv(x)
return y
model = MyModel()
dummy_input = torch.randn(1, 3, 224, 224, device="cpu")
output = model(dummy_input)
input_names = ["x"]
output_names = ["y"]
# opset_version 选择范围:[7,15]
torch.onnx.export(
model,
dummy_input,
"my_model.onnx",
input_names=input_names,
output_names=output_names,
opset_version=14,
)
为了验证我们的实现与Pytorch的实现是否一致,可以用下面的函数验证:
def test_torch_cross_and_my_cross():
x = torch.randn(10, 3, 10, 10)
y = torch.randn(10, 3, 10, 10)
print("my_cross == torch.cross:", torch.allclose(torch.cross(x, y), my_cross(x, y)))
执行后输出如下:
my_cross == torch.cross: True
说明这个实现是正确的。
网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。
添加我为好友,拉您入交流群!
请使用微信扫一扫!