对于锁大家肯定不会陌生,比如 synchronized 关键字 和 ReentrantLock 可重入锁,一般我们用其在多线程环境中控制对资源的并发访问。但是随着业务的发展,分布式的概念逐渐出现在我们系统中,我们在开发的过程中经常需要进行多个系统之间的交互,于是上面的加锁方法就会失去作用。于是在分布式锁就自然而然的诞生了,接下来我们来聊一聊分布式锁实现的几种方式。
分布式锁有以下几个方式:
1、首先,我们需要创建一个锁表:
CREATE TABLE `resource_lock` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT,
`resource_name` varchar(128) NOT NULL DEFAULT '' COMMENT '资源名称',
'node_info' varchar(128) DEFAULT '0' COMMENT '节点信息',
'count' int(11) NOT NULL DEFAULT '0' COMMENT '锁的次数,统计可重入锁',
'desc' varchar(128) DEFAULT NULL COMMENT '额外的描述信息',
`create_time` DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`update_time` DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
PRIMARY KEY ('id'),
UNIQUE KEY 'un_resource_name' ('resource_name')
) ENGINE=InnoDB DEFAULT CHARSET = utf8mb4;
2、lock
先进行查询,如果有值,那么需要比较 node_info 是否一致,这里的 node_info 可以用机器 IP 和线程名字来表示,如果一致那么就加可重入锁 count 的值,如果不一致那么就返回 false 。如果没有值那么直接插入一条数据。伪代码如下:
// 添加事务,原子性
@Transaction
public void lock() {
if (select * from resource_lock where resource_name = 'xxx' for update;) {
// 判断节点信息是否一致
if (currentNodeInfo == resultNodeInfo) {
// 保住锁的可重入性
update resource_lock set count = count + 1 where resource_name = 'xxx';
return true;
} else {
return false;
}
} else {
// 插入新数据
insert into resourceLock;
return true;
}
}
3、tryLock
伪代码如下:
public boolean tryLock(long timeOut) {
long stTime = System.currentTimeMillis();
long endTimeOut = stTime + timeOut;
while (endTimeOut > stTime) {
if (mysqlLock.lock()) {
return true;
}
// 休眠3s后重试
LockSupport.parkNanos(1000 * 1000 * 1000 * 1);
stTime = System.currentTimeMillis();
}
return false;
}
4、unlock
伪代码如下:
@Transaction
public boolean unlock() {
// 查询是否有数据
if (select * from resource_lock where resource_name = 'xxx' for update;) {
// count为1那么可以删除,如果大于1那么需要减去1。
if (count > 1) {
update count = count - 1;
} else {
delete;
}
} else {
return false;
}
}
5、定时清理因为机器宕机导致的锁未被释放的问题
启动一个定时任务,当这个锁远超过任务的执行时间,没有被释放我们就可以认定是节点挂了然后将其直接释放。
首先,Redis客户端为了获取锁,向Redis节点发送如下命令:
SET resource_name my_random_value NX PX 30000
上面的命令如果执行成功,则客户端成功获取到了锁,接下来就可以访问共享资源了;而如果上面的命令执行失败,则说明获取锁失败。
注意,在上面的SET命令中:
最后,当客户端完成了对共享资源的操作之后,执行下面的Redis Lua脚本来释放锁:
if redis.call("get",KEYS[1]) == ARGV[1] then
return redis.call("del",KEYS[1])
else
return 0
end
这段Lua脚本在执行的时候要把前面的my_random_value作为 ARGV[1] 的值传进去,把 resource_name 作为 KEYS[1] 的值传进去。
至此,基于单Redis节点的分布式锁的算法就描述完了。
首先第一个问题,这个锁必须要设置一个过期时间。否则的话,当一个客户端获取锁成功之后,假如它崩溃了,或者由于发生了网络分割(network partition)导致它再也无法和Redis节点通信了,那么它就会一直持有这个锁,而其它客户端永远无法获得锁了,而且把这个过期时间称为锁的有效时间(lock validity time)。获得锁的客户端必须在这个时间之内完成对共享资源的访问。
第二个问题,第一步获取锁的操作,网上不少文章把它实现成了两个Redis命令:
SETNX resource_name my_random_value
EXPIRE resource_name 30
虽然这两个命令和前面算法描述中的一个SET命令执行效果相同,但却不是原子的。如果客户端在执行完SETNX后崩溃了,那么就没有机会执行EXPIRE了,导致它一直持有这个锁。
第三个问题,设置一个随机字符串 my_random_value 是很有必要的,它保证了一个客户端释放的锁必须是自己持有的那个锁。
假如获取锁时SET的不是一个随机字符串,而是一个固定值,那么可能会发生下面的执行序列:
第四个问题,释放锁的操作必须使用Lua脚本来实现。释放锁其实包含三步操作:获取、判断和删除,用Lua脚本来实现能保证这三步的原子性。
否则,如果把这三步操作放到客户端逻辑中去执行的话,就有可能发生与前面第三个问题类似的执行序列:
实际上,在上述第三个问题和第四个问题的分析中,如果不是客户端阻塞住了,而是出现了大的网络延迟,也有可能导致类似的执行序列发生。
这四个问题,只要实现分布式锁的时候加以注意,就都能够被正确处理。
但除此之外,还有一个问题,是由 failover(故障转移) 引起的,却是基于单Redis节点的分布式锁无法解决的。正是这个问题催生了Redlock的出现。
这个问题是这样的。假如Redis节点宕机了,那么所有客户端就都无法获得锁了,服务变得不可用。为了提高可用性,我们可以给这个Redis节点挂一个Slave,当Master节点不可用的时候,系统自动切到Slave上(failover)。但由于Redis的主从复制(replication)是异步的,这可能导致在failover过程中丧失锁的安全性。
例如下面的执行序列:
于是,客户端1和客户端2同时持有了同一个资源的锁。锁的安全性被打破。
前面介绍的基于单Redis节点的分布式锁在failover的时候会产生解决不了的安全性问题,因此antirez提出了新的分布式锁的算法Redlock,它基于N个完全独立的Redis节点(通常情况下N可以设置成5)。
运行Redlock算法的客户端依次执行下面各个步骤,来完成获取锁的操作:
1、获取当前时间(毫秒数)。
2、按顺序依次向N个Redis节点执行获取锁的操作。这个获取操作跟前面基于单Redis节点的获取锁的过程相同,包含随机字符串my_random_value,也包含过期时间(比如PX 30000,即锁的有效时间)。
为了保证在某个Redis节点不可用的时候算法能够继续运行,这个获取锁的操作还有一个超时时间(time out),它要远小于锁的有效时间(几十毫秒量级)。客户端在向某个Redis节点获取锁失败以后,应该立即尝试下一个Redis节点。
这里的失败,应该包含任何类型的失败,比如该Redis节点不可用,或者该Redis节点上的锁已经被其它客户端持有(注:Redlock原文中这里只提到了Redis节点不可用的情况,但也应该包含其它的失败情况)。
3、计算整个获取锁的过程总共消耗了多长时间,计算方法是用当前时间减去第1步记录的时间。如果客户端从大多数Redis节点(>= N/2+1)成功获取到了锁,并且获取锁总共消耗的时间没有超过锁的有效时间(lock validity time),那么这时客户端才认为最终获取锁成功;否则,认为最终获取锁失败。
4、如果最终获取锁成功了,那么这个锁的有效时间应该重新计算,它等于最初的锁的有效时间减去第3步计算出来的获取锁消耗的时间。
5、如果最终获取锁失败了(可能由于获取到锁的Redis节点个数少于N/2+1,或者整个获取锁的过程消耗的时间超过了锁的最初有效时间),那么客户端应该立即向所有Redis节点发起释放锁的操作(即前面介绍的Redis Lua脚本)。
上面描述的只是获取锁的过程,而释放锁的过程比较简单:客户端向所有Redis节点发起释放锁的操作,不管这些节点当时在获取锁的时候成功与否。
由于N个Redis节点中的大多数能正常工作就能保证Redlock正常工作,因此理论上它的可用性更高。我们前面讨论的单Redis节点的分布式锁在failover的时候锁失效的问题,在Redlock中不存在了,但如果有节点发生崩溃重启,还是会对锁的安全性有影响的。具体的影响程度跟Redis对数据的持久化程度有关。
假设一共有5个Redis节点:A, B, C, D, E。设想发生了如下的事件序列:
1、客户端1成功锁住了A, B, C,获取锁成功(但D和E没有锁住)。
2、节点C崩溃重启了,但客户端1在C上加的锁没有持久化下来,丢失了。
3、节点C重启后,客户端2锁住了C, D, E,获取锁成功。
4、这样,客户端1和客户端2同时获得了锁(针对同一资源)。
在默认情况下,Redis的AOF持久化方式是每秒写一次磁盘(即执行fsync),因此最坏情况下可能丢失1秒的数据。为了尽可能不丢数据,Redis允许设置成每次修改数据都进行fsync,但这会降低性能。当然,即使执行了fsync也仍然有可能丢失数据(这取决于系统而不是Redis的实现)。
所以,上面分析的由于节点重启引发的锁失效问题,总是有可能出现的。为了应对这一问题,antirez又提出了延迟重启(delayed restarts)的概念。
也就是说,一个节点崩溃后,先不立即重启它,而是等待一段时间再重启,这段时间应该大于锁的有效时间(lock validity time)。这样的话,这个节点在重启前所参与的锁都会过期,它在重启后就不会对现有的锁造成影响。
在最后释放锁的时候,antirez在算法描述中特别强调,客户端应该向所有Redis节点发起释放锁的操作。也就是说,即使当时向某个节点获取锁没有成功,在释放锁的时候也不应该漏掉这个节点。这是为什么呢?
设想这样一种情况,客户端发给某个Redis节点的获取锁的请求成功到达了该Redis节点,这个节点也成功执行了SET操作,但是它返回给客户端的响应包却丢失了。这在客户端看来,获取锁的请求由于超时而失败了,但在Redis这边看来,加锁已经成功了。
因此,释放锁的时候,客户端也应该对当时获取锁失败的那些Redis节点同样发起请求。实际上,这种情况在异步通信模型中是有可能发生的:客户端向服务器通信是正常的,但反方向却是有问题的。
ZooKeeper是以Paxos算法为基础分布式应用程序协调服务。Zk的数据节点和文件目录类似,所以我们可以用此特性实现分布式锁。
基本实现步骤如下:
1、客户端尝试创建一个znode节点,比如/lock。那么第一个客户端就创建成功了,相当于拿到了锁;而其它的客户端会创建失败(znode已存在),获取锁失败。
2、持有锁的客户端访问共享资源完成后,将znode删掉,这样其它客户端接下来就能来获取锁了。
注意:这里的znode应该被创建成ephemeral的(临时节点)。这是znode的一个特性,它保证如果创建znode的那个客户端崩溃了,那么相应的znode会被自动删除。这保证了锁一定会被释放。
看起来这个锁相当完美,没有Redlock过期时间的问题,而且能在需要的时候让锁自动释放。但其实也存在这其中也存在问题。
ZooKeeper是怎么检测出某个客户端已经崩溃了呢?
实际上,每个客户端都与ZooKeeper的某台服务器维护着一个Session,这个Session依赖定期的心跳(heartbeat)来维持。如果ZooKeeper长时间收不到客户端的心跳(这个时间称为Sesion的过期时间),那么它就认为Session过期了,通过这个Session所创建的所有的ephemeral类型的znode节点都会被自动删除。
假如按照下面的顺序执行:
1、客户端1创建了znode节点/lock,获得了锁。
2、客户端1进入了长时间的GC pause。
3、客户端1连接到ZooKeeper的Session过期了。znode节点/lock被自动删除。
4、客户端2创建了znode节点/lock,从而获得了锁。
5、客户端1从GC pause中恢复过来,它仍然认为自己持有锁。
由上面的执行顺序,可以发现最后客户端1和客户端2都认为自己持有了锁,冲突了。所以说,用ZooKeeper实现的分布式锁也不一定就是安全的,该有的问题它还是有。
ZooKeeper有个很特殊的机制--watch机制。这个机制可以这样来使用,比如当客户端试图创建 /lock 节点的时候,发现它已经存在了,这时候创建失败,但客户端不一定就此对外宣告获取锁失败。
客户端可以进入一种等待状态,等待当/lock节点被删除的时候,ZooKeeper通过watch机制通知它,这样它就可以继续完成创建操作(获取锁)。这可以让分布式锁在客户端用起来就像一个本地的锁一样:加锁失败就阻塞住,直到获取到锁为止。
网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。
添加我为好友,拉您入交流群!
请使用微信扫一扫!