ML之xgboost:利用xgboost算法(sklearn+3Split+调参曲线)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
目录
- eval_set = [(X_train_part, y_train_part), (X_validate, y_validate)]
- bst.fit(X_train_part, y_train_part, eval_metric=["error", "logloss"], eval_set=eval_set, verbose=True)
-
-
- preds = bst.predict(X_test)
- predictions = [round(value) for value in preds]
- test_accuracy = accuracy_score(y_test, predictions)
- print("【max_depth=2,lr=0.1】Test Accuracy: %.2f%%" % (test_accuracy * 100.0))
-
- results = bst.evals_result()
- X_train: (6513, 126)
- X_test: (1611, 126)
- After split(33%),X_train_part: (4363, 126)
- After split(33%),X_validate: (2150, 126)
- [0] validation_0-error:0.045611 validation_0-logloss:0.614637 validation_1-error:0.048372 validation_1-logloss:0.615401
- [1] validation_0-error:0.041256 validation_0-logloss:0.549907 validation_1-error:0.042326 validation_1-logloss:0.550696
- [2] validation_0-error:0.045611 validation_0-logloss:0.49543 validation_1-error:0.048372 validation_1-logloss:0.496777
- [3] validation_0-error:0.041256 validation_0-logloss:0.449089 validation_1-error:0.042326 validation_1-logloss:0.450412
- [4] validation_0-error:0.041256 validation_0-logloss:0.409231 validation_1-error:0.042326 validation_1-logloss:0.410717
- [5] validation_0-error:0.041256 validation_0-logloss:0.373748 validation_1-error:0.042326 validation_1-logloss:0.375653
- [6] validation_0-error:0.023378 validation_0-logloss:0.343051 validation_1-error:0.023256 validation_1-logloss:0.344738
- [7] validation_0-error:0.041256 validation_0-logloss:0.315369 validation_1-error:0.042326 validation_1-logloss:0.317409
- [8] validation_0-error:0.041256 validation_0-logloss:0.290912 validation_1-error:0.042326 validation_1-logloss:0.292587
- [9] validation_0-error:0.023378 validation_0-logloss:0.269356 validation_1-error:0.023256 validation_1-logloss:0.271103
- [10] validation_0-error:0.00573 validation_0-logloss:0.249593 validation_1-error:0.006512 validation_1-logloss:0.251354
- [11] validation_0-error:0.01719 validation_0-logloss:0.228658 validation_1-error:0.017674 validation_1-logloss:0.230144
- [12] validation_0-error:0.01719 validation_0-logloss:0.210442 validation_1-error:0.017674 validation_1-logloss:0.21167
- [13] validation_0-error:0.01719 validation_0-logloss:0.194562 validation_1-error:0.017674 validation_1-logloss:0.19555
- [14] validation_0-error:0.01719 validation_0-logloss:0.1807 validation_1-error:0.017674 validation_1-logloss:0.181463
- [15] validation_0-error:0.01719 validation_0-logloss:0.168585 validation_1-error:0.017674 validation_1-logloss:0.169138
- [16] validation_0-error:0.01719 validation_0-logloss:0.157988 validation_1-error:0.017674 validation_1-logloss:0.158345
- [17] validation_0-error:0.01719 validation_0-logloss:0.149407 validation_1-error:0.017674 validation_1-logloss:0.149731
- [18] validation_0-error:0.0259 validation_0-logloss:0.140835 validation_1-error:0.024651 validation_1-logloss:0.140979
- [19] validation_0-error:0.022003 validation_0-logloss:0.133937 validation_1-error:0.020465 validation_1-logloss:0.13405
- [20] validation_0-error:0.022003 validation_0-logloss:0.126967 validation_1-error:0.020465 validation_1-logloss:0.126914
- [21] validation_0-error:0.022003 validation_0-logloss:0.121386 validation_1-error:0.020465 validation_1-logloss:0.121303
- [22] validation_0-error:0.022003 validation_0-logloss:0.115692 validation_1-error:0.020465 validation_1-logloss:0.115456
- [23] validation_0-error:0.022003 validation_0-logloss:0.111147 validation_1-error:0.020465 validation_1-logloss:0.110881
- [24] validation_0-error:0.022003 validation_0-logloss:0.106477 validation_1-error:0.020465 validation_1-logloss:0.10607
- [25] validation_0-error:0.022003 validation_0-logloss:0.102434 validation_1-error:0.020465 validation_1-logloss:0.102319
- [26] validation_0-error:0.022003 validation_0-logloss:0.098434 validation_1-error:0.020465 validation_1-logloss:0.09819
- [27] validation_0-error:0.022003 validation_0-logloss:0.094875 validation_1-error:0.020465 validation_1-logloss:0.094824
- [28] validation_0-error:0.022003 validation_0-logloss:0.091579 validation_1-error:0.020465 validation_1-logloss:0.091784
- [29] validation_0-error:0.013294 validation_0-logloss:0.086202 validation_1-error:0.013488 validation_1-logloss:0.086807
- [30] validation_0-error:0.022003 validation_0-logloss:0.083247 validation_1-error:0.020465 validation_1-logloss:0.083741
- [31] validation_0-error:0.022003 validation_0-logloss:0.080496 validation_1-error:0.020465 validation_1-logloss:0.080924
- [32] validation_0-error:0.022003 validation_0-logloss:0.077298 validation_1-error:0.020465 validation_1-logloss:0.077394
- [33] validation_0-error:0.015815 validation_0-logloss:0.074507 validation_1-error:0.016279 validation_1-logloss:0.074765
- [34] validation_0-error:0.022003 validation_0-logloss:0.071848 validation_1-error:0.020465 validation_1-logloss:0.071811
- [35] validation_0-error:0.010543 validation_0-logloss:0.069488 validation_1-error:0.009302 validation_1-logloss:0.069385
- [36] validation_0-error:0.001834 validation_0-logloss:0.067147 validation_1-error:0.002326 validation_1-logloss:0.067341
- [37] validation_0-error:0.001834 validation_0-logloss:0.06504 validation_1-error:0.002326 validation_1-logloss:0.065406
- [38] validation_0-error:0.001834 validation_0-logloss:0.062898 validation_1-error:0.002326 validation_1-logloss:0.063381
- [39] validation_0-error:0.001834 validation_0-logloss:0.060837 validation_1-error:0.002326 validation_1-logloss:0.061088
- [40] validation_0-error:0.001834 validation_0-logloss:0.058894 validation_1-error:0.002326 validation_1-logloss:0.059039
- [41] validation_0-error:0.001834 validation_0-logloss:0.057112 validation_1-error:0.002326 validation_1-logloss:0.057326
- [42] validation_0-error:0.001834 validation_0-logloss:0.055391 validation_1-error:0.002326 validation_1-logloss:0.05543
- [43] validation_0-error:0.001834 validation_0-logloss:0.053745 validation_1-error:0.002326 validation_1-logloss:0.053871
- [44] validation_0-error:0.001834 validation_0-logloss:0.052198 validation_1-error:0.002326 validation_1-logloss:0.052235
- [45] validation_0-error:0.001834 validation_0-logloss:0.050776 validation_1-error:0.002326 validation_1-logloss:0.051033
- [46] validation_0-error:0.001834 validation_0-logloss:0.049351 validation_1-error:0.002326 validation_1-logloss:0.04973
- [47] validation_0-error:0.001834 validation_0-logloss:0.047848 validation_1-error:0.002326 validation_1-logloss:0.048287
- [48] validation_0-error:0.001834 validation_0-logloss:0.046406 validation_1-error:0.002326 validation_1-logloss:0.046702
- [49] validation_0-error:0.001834 validation_0-logloss:0.045141 validation_1-error:0.002326 validation_1-logloss:0.045492
- [50] validation_0-error:0.001834 validation_0-logloss:0.043917 validation_1-error:0.002326 validation_1-logloss:0.044133
- [51] validation_0-error:0.001834 validation_0-logloss:0.042729 validation_1-error:0.002326 validation_1-logloss:0.042999
- [52] validation_0-error:0.001834 validation_0-logloss:0.041608 validation_1-error:0.002326 validation_1-logloss:0.041807
- [53] validation_0-error:0.001834 validation_0-logloss:0.040493 validation_1-error:0.002326 validation_1-logloss:0.040855
- [54] validation_0-error:0.001834 validation_0-logloss:0.039457 validation_1-error:0.002326 validation_1-logloss:0.039871
- [55] validation_0-error:0.001834 validation_0-logloss:0.038452 validation_1-error:0.002326 validation_1-logloss:0.038755
- [56] validation_0-error:0.001834 validation_0-logloss:0.037478 validation_1-error:0.002326 validation_1-logloss:0.037717
- [57] validation_0-error:0.001834 validation_0-logloss:0.036439 validation_1-error:0.002326 validation_1-logloss:0.036777
- [58] validation_0-error:0.001834 validation_0-logloss:0.035552 validation_1-error:0.002326 validation_1-logloss:0.035936
- [59] validation_0-error:0.001834 validation_0-logloss:0.034694 validation_1-error:0.002326 validation_1-logloss:0.034984
- [60] validation_0-error:0.001834 validation_0-logloss:0.033826 validation_1-error:0.002326 validation_1-logloss:0.034132
- [61] validation_0-error:0.001834 validation_0-logloss:0.032959 validation_1-error:0.002326 validation_1-logloss:0.033348
- [62] validation_0-error:0.001834 validation_0-logloss:0.032192 validation_1-error:0.002326 validation_1-logloss:0.032526
- [63] validation_0-error:0.001834 validation_0-logloss:0.031476 validation_1-error:0.002326 validation_1-logloss:0.031754
- [64] validation_0-error:0.001834 validation_0-logloss:0.030756 validation_1-error:0.002326 validation_1-logloss:0.031081
- [65] validation_0-error:0.001834 validation_0-logloss:0.030038 validation_1-error:0.002326 validation_1-logloss:0.030377
- [66] validation_0-error:0.001834 validation_0-logloss:0.029332 validation_1-error:0.002326 validation_1-logloss:0.029594
- [67] validation_0-error:0.001834 validation_0-logloss:0.028703 validation_1-error:0.002326 validation_1-logloss:0.029079
- [68] validation_0-error:0.001834 validation_0-logloss:0.028064 validation_1-error:0.002326 validation_1-logloss:0.028391
- [69] validation_0-error:0.001834 validation_0-logloss:0.027404 validation_1-error:0.002326 validation_1-logloss:0.027725
- [70] validation_0-error:0.001834 validation_0-logloss:0.026824 validation_1-error:0.002326 validation_1-logloss:0.027187
- [71] validation_0-error:0.001834 validation_0-logloss:0.026268 validation_1-error:0.002326 validation_1-logloss:0.026565
- [72] validation_0-error:0.001834 validation_0-logloss:0.025679 validation_1-error:0.002326 validation_1-logloss:0.025982
- [73] validation_0-error:0.001834 validation_0-logloss:0.025153 validation_1-error:0.002326 validation_1-logloss:0.025413
- [74] validation_0-error:0.001834 validation_0-logloss:0.02461 validation_1-error:0.002326 validation_1-logloss:0.024927
- [75] validation_0-error:0.001834 validation_0-logloss:0.0241 validation_1-error:0.002326 validation_1-logloss:0.02446
- [76] validation_0-error:0.001834 validation_0-logloss:0.023615 validation_1-error:0.002326 validation_1-logloss:0.023921
- [77] validation_0-error:0.001834 validation_0-logloss:0.023118 validation_1-error:0.002326 validation_1-logloss:0.023423
- [78] validation_0-error:0.001834 validation_0-logloss:0.022671 validation_1-error:0.002326 validation_1-logloss:0.023015
- [79] validation_0-error:0.001834 validation_0-logloss:0.022244 validation_1-error:0.002326 validation_1-logloss:0.022538
- [80] validation_0-error:0.001834 validation_0-logloss:0.021793 validation_1-error:0.002326 validation_1-logloss:0.022087
- [81] validation_0-error:0.001834 validation_0-logloss:0.021396 validation_1-error:0.002326 validation_1-logloss:0.021654
- [82] validation_0-error:0.001834 validation_0-logloss:0.020948 validation_1-error:0.002326 validation_1-logloss:0.021198
- [83] validation_0-error:0.001834 validation_0-logloss:0.020559 validation_1-error:0.002326 validation_1-logloss:0.020806
- [84] validation_0-error:0.001834 validation_0-logloss:0.020144 validation_1-error:0.002326 validation_1-logloss:0.020388
- [85] validation_0-error:0.001834 validation_0-logloss:0.019775 validation_1-error:0.002326 validation_1-logloss:0.020057
- [86] validation_0-error:0.001834 validation_0-logloss:0.019029 validation_1-error:0.002326 validation_1-logloss:0.019235
- [87] validation_0-error:0.001834 validation_0-logloss:0.018672 validation_1-error:0.002326 validation_1-logloss:0.018823
- [88] validation_0-error:0.001834 validation_0-logloss:0.018313 validation_1-error:0.002326 validation_1-logloss:0.018507
- [89] validation_0-error:0.001834 validation_0-logloss:0.017989 validation_1-error:0.002326 validation_1-logloss:0.01815
- [90] validation_0-error:0.001834 validation_0-logloss:0.017376 validation_1-error:0.002326 validation_1-logloss:0.01748
- [91] validation_0-error:0.001834 validation_0-logloss:0.017087 validation_1-error:0.002326 validation_1-logloss:0.017189
- [92] validation_0-error:0.001834 validation_0-logloss:0.016778 validation_1-error:0.002326 validation_1-logloss:0.016877
- [93] validation_0-error:0.001834 validation_0-logloss:0.016458 validation_1-error:0.002326 validation_1-logloss:0.016527
- [94] validation_0-error:0.001834 validation_0-logloss:0.015932 validation_1-error:0.002326 validation_1-logloss:0.015956
- [95] validation_0-error:0.001834 validation_0-logloss:0.015645 validation_1-error:0.002326 validation_1-logloss:0.015665
- [96] validation_0-error:0.001834 validation_0-logloss:0.015379 validation_1-error:0.002326 validation_1-logloss:0.015397
- [97] validation_0-error:0.001834 validation_0-logloss:0.015116 validation_1-error:0.002326 validation_1-logloss:0.01513
- [98] validation_0-error:0.001834 validation_0-logloss:0.014883 validation_1-error:0.002326 validation_1-logloss:0.014893
- [99] validation_0-error:0.001834 validation_0-logloss:0.01464 validation_1-error:0.002326 validation_1-logloss:0.014624
-
-
- 【max_depth=2,lr=0.1】Test Accuracy: 99.81%
- {'validation_0': {'error': [0.045611, 0.041256, 0.045611, 0.041256, 0.041256, 0.041256, 0.023378, 0.041256, 0.041256, 0.023378, 0.00573, 0.01719, 0.01719, 0.01719, 0.01719, 0.01719, 0.01719, 0.01719, 0.0259, 0.022003, 0.022003, 0.022003, 0.022003, 0.022003, 0.022003, 0.022003, 0.022003, 0.022003, 0.022003, 0.013294, 0.022003, 0.022003, 0.022003, 0.015815, 0.022003, 0.010543, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834, 0.001834], 'logloss': [0.614637, 0.549907, 0.49543, 0.449089, 0.409231, 0.373748, 0.343051, 0.315369, 0.290912, 0.269356, 0.249593, 0.228658, 0.210442, 0.194562, 0.1807, 0.168585, 0.157988, 0.149407, 0.140835, 0.133937, 0.126967, 0.121386, 0.115692, 0.111147, 0.106477, 0.102434, 0.098434, 0.094875, 0.091579, 0.086202, 0.083247, 0.080496, 0.077298, 0.074507, 0.071848, 0.069488, 0.067147, 0.06504, 0.062898, 0.060837, 0.058894, 0.057112, 0.055391, 0.053745, 0.052198, 0.050776, 0.049351, 0.047848, 0.046406, 0.045141, 0.043917, 0.042729, 0.041608, 0.040493, 0.039457, 0.038452, 0.037478, 0.036439, 0.035552, 0.034694, 0.033826, 0.032959, 0.032192, 0.031476, 0.030756, 0.030038, 0.029332, 0.028703, 0.028064, 0.027404, 0.026824, 0.026268, 0.025679, 0.025153, 0.02461, 0.0241, 0.023615, 0.023118, 0.022671, 0.022244, 0.021793, 0.021396, 0.020948, 0.020559, 0.020144, 0.019775, 0.019029, 0.018672, 0.018313, 0.017989, 0.017376, 0.017087, 0.016778, 0.016458, 0.015932, 0.015645, 0.015379, 0.015116, 0.014883, 0.01464]}, 'validation_1': {'error': [0.048372, 0.042326, 0.048372, 0.042326, 0.042326, 0.042326, 0.023256, 0.042326, 0.042326, 0.023256, 0.006512, 0.017674, 0.017674, 0.017674, 0.017674, 0.017674, 0.017674, 0.017674, 0.024651, 0.020465, 0.020465, 0.020465, 0.020465, 0.020465, 0.020465, 0.020465, 0.020465, 0.020465, 0.020465, 0.013488, 0.020465, 0.020465, 0.020465, 0.016279, 0.020465, 0.009302, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002326, 0.002
网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。
添加我为好友,拉您入交流群!
请使用微信扫一扫!