ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)


晴空万里
晴空万里 2022-09-19 14:44:18 50195
分类专栏: 资讯

ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

目录

输出结果

设计思路

核心代码

更多输出


输出结果

正在更新……

设计思路

正在更新……

核心代码

  1. from sklearn.grid_search import GridSearchCV
  2. param_test = { 'n_estimators': range(1, 51, 1)}
  3. clf = GridSearchCV(estimator = bst, param_grid = param_test, cv=5)
  4. clf.fit(X_train, y_train)
  5. clf.grid_scores_, clf.best_params_, clf.best_score_
  6. grid_scores_mean= [0.90542, 0.94749, 0.90542, 0.94749, 0.90573, 0.94718,
  7. 0.90542, 0.94242, 0.94473, 0.97482, 0.94887, 0.97850,
  8. 0.97298, 0.97850, 0.97298, 0.97850, 0.97850, 0.97850,
  9. 0.97850, 0.97850, 0.97850, 0.97850, 0.97850, 0.97850,
  10. 0.97850, 0.97804, 0.97774, 0.97835, 0.98296, 0.98419,
  11. 0.98342, 0.98372, 0.98419, 0.98419, 0.98419, 0.98419,
  12. 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419,
  13. 0.98419, 0.98419, 0.98419, 0.98419, 0.98419, 0.98419,
  14. 0.98419 ]
  15. grid_scores_std = [0.08996, 0.07458, 0.08996, 0.07458, 0.09028, 0.07436,
  16. 0.08996, 0.07331, 0.07739, 0.02235, 0.07621, 0.02387,
  17. 0.03186, 0.02387, 0.03186, 0.02387, 0.02387, 0.02387,
  18. 0.02387, 0.02387, 0.02387, 0.02387, 0.02387, 0.02387,
  19. 0.02387, 0.02365, 0.02337, 0.02383, 0.01963, 0.02040,
  20. 0.01988, 0.02008, 0.02040, 0.02040, 0.02040, 0.02040,
  21. 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040,
  22. 0.02040, 0.02040, 0.02040, 0.02040, 0.02040, 0.02040,
  23. 0.02040 ]
  24. 7-CrVa交叉验证曲线可视化
  25. import matplotlib.pyplot as plt
  26. x = range(0,len(grid_scores_mean))
  27. y1 = grid_scores_mean
  28. y2 = grid_scores_std
  29. Xlabel = 'n_estimators'
  30. Ylabel = 'value'
  31. title = 'mushroom datase: xgboost(sklearn+GridSearchCV) model'
  32. plt.plot(x,y1,'r',label='Mean') 绘制mean曲线
  33. plt.plot(x,y2,'g',label='Std') 绘制std曲线
  34. plt.rcParams['font.sans-serif']=['Times New Roman'] 手动添加中文字体,或者['font.sans-serif'] = ['FangSong'] SimHei
  35. myfont = matplotlib.font_manager.FontProperties(fname='C:/Windows/Fonts/msyh.ttf') 也可以指定win系统字体路径
  36. plt.rcParams['axes.unicode_minus'] = False 对坐标轴的负号进行正常显示
  37. plt.xlabel(Xlabel)
  38. plt.ylabel(Ylabel)
  39. plt.title(title)
  40. plt.legend(loc=1)
  41. plt.show()

更多输出

  1. GridSearchCV time: 79.7655139499154
  2. clf.grid_scores_: [mean: 0.90542, std: 0.08996, params: {'n_estimators': 1}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 2},
  3. mean: 0.90542, std: 0.08996, params: {'n_estimators': 3}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 4},
  4. mean: 0.90573, std: 0.09028, params: {'n_estimators': 5}, mean: 0.94718, std: 0.07436, params: {'n_estimators': 6},
  5. mean: 0.90542, std: 0.08996, params: {'n_estimators': 7}, mean: 0.94242, std: 0.07331, params: {'n_estimators': 8},
  6. mean: 0.94473, std: 0.07739, params: {'n_estimators': 9}, mean: 0.97482, std: 0.02235, params: {'n_estimators': 10},
  7. mean: 0.94887, std: 0.07621, params: {'n_estimators': 11}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 12},
  8. mean: 0.97298, std: 0.03186, params: {'n_estimators': 13}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 14},
  9. mean: 0.97298, std: 0.03186, params: {'n_estimators': 15}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 16},
  10. mean: 0.97850, std: 0.02387, params: {'n_estimators': 17}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 18},
  11. mean: 0.97850, std: 0.02387, params: {'n_estimators': 19}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 20},
  12. mean: 0.97850, std: 0.02387, params: {'n_estimators': 21}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 22},
  13. mean: 0.97850, std: 0.02387, params: {'n_estimators': 23}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 24},
  14. mean: 0.97850, std: 0.02387, params: {'n_estimators': 25}, mean: 0.97804, std: 0.02365, params: {'n_estimators': 26},
  15. mean: 0.97774, std: 0.02337, params: {'n_estimators': 27}, mean: 0.97835, std: 0.02383, params: {'n_estimators': 28},
  16. mean: 0.98296, std: 0.01963, params: {'n_estimators': 29}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 30},
  17. mean: 0.98342, std: 0.01988, params: {'n_estimators': 31}, mean: 0.98372, std: 0.02008, params: {'n_estimators': 32},
  18. mean: 0.98419, std: 0.02040, params: {'n_estimators': 33}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 34},
  19. mean: 0.98419, std: 0.02040, params: {'n_estimators': 35}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 36},
  20. mean: 0.98419, std: 0.02040, params: {'n_estimators': 37}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 38},
  21. mean: 0.98419, std: 0.02040, params: {'n_estimators': 39}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 40},
  22. mean: 0.98419, std: 0.02040, params: {'n_estimators': 41}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 42},
  23. mean: 0.98419, std: 0.02040, params: {'n_estimators': 43}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 44},
  24. mean: 0.98419, std: 0.02040, params: {'n_estimators': 45}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 46},
  25. mean: 0.98419, std: 0.02040, params: {'n_estimators': 47}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 48},
  26. mean: 0.98419, std: 0.02040, params: {'n_estimators': 49}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 50}]
  27. clf.best_params_: {'n_estimators': 30}
  28. clf.best_score_: 0.9841854752034392
  1. [mean: 0.90542, std: 0.08996, params: {'n_estimators': 1},
  2. mean: 0.94749, std: 0.07458, params: {'n_estimators': 2},
  3. mean: 0.90542, std: 0.08996, params: {'n_estimators': 3},
  4. mean: 0.94749, std: 0.07458, params: {'n_estimators': 4},
  5. mean: 0.90573, std: 0.09028, params: {'n_estimators': 5},
  6. mean: 0.94718, std: 0.07436, params: {'n_estimators': 6},
  7. mean: 0.90542, std: 0.08996, params: {'n_estimators': 7},
  8. mean: 0.94242, std: 0.07331, params: {'n_estimators': 8},
  9. mean: 0.94473, std: 0.07739, params: {'n_estimators': 9},
  10. mean: 0.97482, std: 0.02235, params: {'n_estimators': 10},
  11. mean: 0.94887, std: 0.07621, params: {'n_estimators': 11},
  12. mean: 0.97850, std: 0.02387, params: {'n_estimators': 12},
  13. mean: 0.97298, std: 0.03186, params: {'n_estimators': 13},
  14. mean: 0.97850, std: 0.02387, params: {'n_estimators': 14},
  15. mean: 0.97298, std: 0.03186, params: {'n_estimators': 15},
  16. mean: 0.97850, std: 0.02387, params: {'n_estimators': 16},
  17. mean: 0.97850, std: 0.02387, params: {'n_estimators': 17},
  18. mean: 0.97850, std: 0.02387, params: {'n_estimators': 18},
  19. mean: 0.97850, std: 0.02387, params: {'n_estimators': 19},
  20. mean: 0.97850, std: 0.02387, params: {'n_estimators': 20},
  21. mean: 0.97850, std: 0.02387, params: {'n_estimators': 21},
  22. mean: 0.97850, std: 0.02387, params: {'n_estimators': 22},
  23. mean: 0.97850, std: 0.02387, params: {'n_estimators': 23},
  24. mean: 0.97850, std: 0.02387, params: {'n_estimators': 24},
  25. mean: 0.97850, std: 0.02387, params: {'n_estimators': 25},
  26. mean: 0.97804, std: 0.02365, params: {'n_estimators': 26},
  27. mean: 0.97774, std: 0.02337, params: {'n_estimators': 27},
  28. mean: 0.97835, std: 0.02383, params: {'n_estimators': 28},
  29. mean: 0.98296, std: 0.01963, params: {'n_estimators': 29},
  30. mean: 0.98419, std: 0.02040, params: {'n_estimators': 30},
  31. mean: 0.98342, std: 0.01988, params: {'n_estimators': 31},
  32. mean: 0.98372, std: 0.02008, params: {'n_estimators': 32},
  33. mean: 0.98419, std: 0.02040, params: {'n_estimators': 33},
  34. mean: 0.98419, std: 0.02040, params: {'n_estimators': 34},
  35. mean: 0.98419, std: 0.02040, params: {'n_estimators': 35},
  36. mean: 0.98419, std: 0.02040, params: {'n_estimators': 36},
  37. mean: 0.98419, std: 0.02040, params: {'n_estimators': 37},
  38. mean: 0.98419, std: 0.02040, params: {'n_estimators': 38},
  39. mean: 0.98419, std: 0.02040, params: {'n_estimators': 39},
  40. mean: 0.98419, std: 0.02040, params: {'n_estimators': 40},
  41. mean: 0.98419, std: 0.02040, params: {'n_estimators': 41},
  42. mean: 0.98419, std: 0.02040, params: {'n_estimators': 42},
  43. mean: 0.98419, std: 0.02040, params: {'n_estimators': 43},
  44. mean: 0.98419, std: 0.02040, params: {'n_estimators': 44},
  45. mean: 0.98419, std: 0.02040, params: {'n_estimators': 45},
  46. mean: 0.98419, std: 0.02040, params: {'n_estimators': 46},
  47. mean: 0.98419, std: 0.02040, params: {'n_estimators': 47},
  48. mean: 0.98419, std: 0.02040, params: {'n_estimators': 48},
  49. mean: 0.98419, std: 0.02040, params: {'n_estimators': 49}]
  50. grid_scores_ = [mean: 0.90542, std: 0.08996,
  51. mean: 0.94749, std: 0.07458,
  52. mean: 0.90542, std: 0.08996,
  53. mean: 0.94749, std: 0.07458,
  54. mean: 0.90573, std: 0.09028,
  55. mean: 0.94718, std: 0.07436,
  56. mean: 0.90542, std: 0.08996,
  57. mean: 0.94242, std: 0.07331,
  58. mean: 0.94473, std: 0.07739,
  59. mean: 0.97482, std: 0.02235,
  60. mean: 0.94887, std: 0.07621,
  61. mean: 0.97850, std: 0.02387,
  62. mean: 0.97298, std: 0.03186,
  63. mean: 0.97850, std: 0.02387,
  64. mean: 0.97298, std: 0.03186,
  65. mean: 0.97850, std: 0.02387,
  66. mean: 0.97850, std: 0.02387,
  67. mean: 0.97850, std: 0.02387,
  68. mean: 0.97850, std: 0.02387,
  69. mean: 0.97850, std: 0.02387,
  70. mean: 0.97850, std: 0.02387,
  71. mean: 0.97850, std: 0.02387,
  72. mean: 0.97850, std: 0.02387,
  73. mean: 0.97850, std: 0.02387,
  74. mean: 0.97850, std: 0.02387,
  75. mean: 0.97804, std: 0.02365,
  76. mean: 0.97774, std: 0.02337,
  77. mean: 0.97835, std: 0.02383,
  78. mean: 0.98296, std: 0.01963,
  79. mean: 0.98419, std: 0.02040,
  80. mean: 0.98342, std: 0.01988,
  81. mean: 0.98372, std: 0.02008,
  82. mean: 0.98419, std: 0.02040,
  83. mean: 0.98419, std: 0.02040,
  84. mean: 0.98419, std: 0.02040,
  85. mean: 0.98419, std: 0.02040,
  86. mean: 0.98419, std: 0.02040,
  87. mean: 0.98419, std: 0.02040,
  88. mean: 0.98419, std: 0.02040,
  89. mean: 0.98419, std: 0.02040,
  90. mean: 0.98419, std: 0.02040,
  91. mean: 0.98419, std: 0.02040,
  92. 网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。

    赞同 0
    评论 0 条
晴空万里L0
粉丝 0 发表 11 + 关注 私信
上周热门
如何使用 StarRocks 管理和优化数据湖中的数据?  2941
【软件正版化】软件正版化工作要点  2860
统信UOS试玩黑神话:悟空  2819
信刻光盘安全隔离与信息交换系统  2712
镜舟科技与中启乘数科技达成战略合作,共筑数据服务新生态  1246
grub引导程序无法找到指定设备和分区  1213
华为全联接大会2024丨软通动力分论坛精彩议程抢先看!  163
点击报名 | 京东2025校招进校行程预告  162
2024海洋能源产业融合发展论坛暨博览会同期活动-海洋能源与数字化智能化论坛成功举办  160
华为纯血鸿蒙正式版9月底见!但Mate 70的内情还得接着挖...  157
本周热议
我的信创开放社区兼职赚钱历程 40
今天你签到了吗? 27
信创开放社区邀请他人注册的具体步骤如下 15
如何玩转信创开放社区—从小白进阶到专家 15
方德桌面操作系统 14
我有15积分有什么用? 13
用抖音玩法闯信创开放社区——用平台宣传企业产品服务 13
如何让你先人一步获得悬赏问题信息?(创作者必看) 12
2024中国信创产业发展大会暨中国信息科技创新与应用博览会 9
中央国家机关政府采购中心:应当将CPU、操作系统符合安全可靠测评要求纳入采购需求 8

加入交流群

请使用微信扫一扫!