TF之LSTM:利用多层LSTM算法对MNIST手写数字识别数据集进行多分类
目录
更新……
-
-
-
- -*- coding:utf-8 -*-
- import tensorflow as tf
- import numpy as np
- from tensorflow.contrib import rnn
- from tensorflow.examples.tutorials.mnist import input_data
-
- 根据电脑情况设置 GPU
- config = tf.ConfigProto()
- config.gpu_options.allow_growth = True
- sess = tf.Session(config=config)
-
- 1、定义数据集
- mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
- print(mnist.train.images.shape)
-
-
- 2、定义模型超参数
- lr = 1e-3
- batch_size = 128
- batch_size = tf.placeholder(tf.int32) 采用占位符的方式,因为在训练和测试的时候要用不同的batch_size。注意类型必须为 tf.int32
- input_size = 28 每个时刻的输入特征是28维的,就是每个时刻输入一行,一行有 28 个像素
- timestep_size = 28 时序持续长度为28,即每做一次预测,需要先输入28行
- hidden_size = 256 每个隐含层的节点数
- layer_num = 2 LSTM layer 的层数
- class_num = 10 最后输出分类类别数量,如果是回归预测的话应该是 1
-
- _X = tf.placeholder(tf.float32, [None, 784])
- y = tf.placeholder(tf.float32, [None, class_num])
- keep_prob = tf.placeholder(tf.float32)
-
- 3、LSTM模型的搭建、训练、测试
- 3.1、LSTM模型的搭建
- X = tf.reshape(_X, [-1, 28, 28]) RNN 的输入shape = (batch_size, timestep_size, input_size),把784个点的字符信息还原成 28 * 28 的图片
- lstm_cell = rnn.BasicLSTMCell(num_units=hidden_size, forget_bias=1.0, state_is_tuple=True) 定义一层 LSTM_cell,只需要说明 hidden_size, 它会自动匹配输入的 X 的维度
- lstm_cell = rnn.DropoutWrapper(cell=lstm_cell, input_keep_prob=1.0, output_keep_prob=keep_prob) 添加 dropout layer, 一般只设置 output_keep_prob
- mlstm_cell = rnn.MultiRNNCell([lstm_cell] * layer_num, state_is_tuple=True) 调用 MultiRNNCell来实现多层 LSTM
- init_state = mlstm_cell.zero_state(batch_size, dtype=tf.float32) 用全零来初始化state
-
- 3.2、LSTM模型的运行:构建好的网络运行起来
- T1、调用 dynamic_rnn()法
- ** 当 time_major==False 时, outputs.shape = [batch_size, timestep_size, hidden_size],所以,可以取 h_state = outputs[:, -1, :] 作为最后输出
- ** state.shape = [layer_num, 2, batch_size, hidden_size],或者,可以取 h_state = state[-1][1] 作为最后输出,最后输出维度是 [batch_size, hidden_size]
- outputs, state = tf.nn.dynamic_rnn(mlstm_cell, inputs=X, initial_state=init_state, time_major=False)
- h_state = outputs[:, -1, :] 或者 h_state = state[-1][1]
-
- T2、自定义LSTM迭代按时间步展开计算:为了更好的理解 LSTM 工作原理把T1的函数自己来实现
- (1)、可以采用RNNCell的 __call__()函数,来实现LSTM按时间步迭代。
- outputs = list()
- state = init_state
- with tf.variable_scope('RNN'):
- for timestep in range(timestep_size):
- if timestep > 0:
- tf.get_variable_scope().reuse_variables()
- (cell_output, state) = mlstm_cell(X[:, timestep, :], state) 这里的state保存了每一层 LSTM 的状态
- outputs.append(cell_output)
- h_state = outputs[-1]
-
-
- 3.3、LSTM模型的训练
- 定义 softmax 的连接权重矩阵和偏置:上面 LSTM 部分的输出会是一个 [hidden_size] 的tensor,我们要分类的话,还需要接一个 softmax 层
- out_W = tf.placeholder(tf.float32, [hidden_size, class_num], name='out_Weights')
- out_bias = tf.placeholder(tf.float32, [class_num], name='out_bias')
- W = tf.Variable(tf.truncated_normal([hidden_size, class_num], stddev=0.1), dtype=tf.float32)
- bias = tf.Variable(tf.constant(0.1,shape=[class_num]), dtype=tf.float32)
- y_pre = tf.nn.softmax(tf.matmul(h_state, W) + bias)
-
- 定义损失和评估函数
- cross_entropy = -tf.reduce_mean(y * tf.log(y_pre))
- train_op = tf.train.AdamOptimizer(lr).minimize(cross_entropy)
-
- correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(y,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
-
- sess.run(tf.global_variables_initializer())
- for i in range(2000):
- _batch_size = 128
- batch = mnist.train.next_batch(_batch_size)
- if (i+1)%200 == 0:
- train_accuracy = sess.run(accuracy, feed_dict={
- _X:batch[0], y: batch[1], keep_prob: 1.0, batch_size: _batch_size})
- 已经迭代完成的 epoch 数: mnist.train.epochs_completed
- print("Iter%d, step %d, training accuracy %g" % ( mnist.train.epochs_completed, (i+1), train_accuracy))
- sess.run(train_op, feed_dict={_X: batch[0], y: batch[1], keep_prob: 0.5, batch_size: _batch_size})
-
- 计算测试数据的准确率
- print("test accuracy %g"% sess.run(accuracy, feed_dict={_X: mnist.test.images, y: mnist.test.labels,
- keep_prob: 1.0, batch_size:mnist.test.images.shape[0]}))
-
网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。
添加我为好友,拉您入交流群!
请使用微信扫一扫!