GPU概念、工作原理及与CPU的区别 | 国内GPU厂商及细分行业前景(2023)


可口可乐
可口可乐 2023-06-12 12:46:20 66638
分类专栏: 资讯

近几个月,几乎每个行业的小伙伴都了解到了ChatGPT的可怕能力。你知道么,ChatGPT之所以如此厉害,是因为它用到了几万张NVIDA Tesla A100显卡做AI推理和图形计算。

本文就简单分享下GPU的相关内容,欢迎阅读。

图片

GPU是什么?

GPU的英文全称Graphics Processing Unit,图形处理单元。

说直白一点:GPU是一款专门的图形处理芯片,做图形渲染、数值分析、金融分析、密码破解,以及其他数学计算与几何运算的。GPU可以在PC、工作站、游戏主机、手机、平板等多种智能终端设备上运行。

GPU和显卡的关系,就像是CPU和主板的关系。前者是显卡的心脏,后者是主板的心脏。有些小伙伴会把GPU和显卡当成一个东西,其实还有些差别的,显卡不仅包括GPU,还有一些显存、VRM稳压模块、MRAM芯片、总线、风扇、外围设备接口等等。

图片

 

GPU和CPU谁最强呢?

这个其实不好说,好点的GPU内部的晶体管数量可以超过CPU,CPU的强项是做逻辑运算,GPU的强项是做数学运算和图形渲染。这就ChatGPT用大量高性能显卡做AI推理的原因。

接下来,我们做个简单的对比。

  • 结构组成不同

CPU和GPU都是运算的处理器,在架构组成上都包括3个部分:运算单元ALU、控制单元Control和缓存单元Cache。

但是,三者的组成比例却相差很大。

在CPU中缓存单元大概占50%,控制单元25%,运算单元25%;

在GPU中缓存单元大概占5%,控制单元5%,运算单元90%。

图片

 

结构组成上的巨大差异说明:CPU的运算能力更加均衡,但是不适合做大量的运算;GPU更适合做大量运算。

这倒不是说GPU更牛X,实际上GPU更像是一大群工厂流水线上的工人,适合做大量的简单运算,很复杂的搞不了。但是简单的事情做得非常快,比CPU要快得多。

相比GPU,CPU更像是技术专家,可以做复杂的运算,比如逻辑运算、响应用户请求、网络通信等。但是因为ALU占比较少、内核少,所以适合做相对少量的复杂运算。

图片

 

    • 缓存不同

在CPU里面,大概50%是缓存单元,并且是四级缓存结构;而在GPU中,缓存是一级或者二级的。

    • 浮点运算方式不同

CPU性能更加注重线程的性能,在控制部分做的事情较多,这样做就是为了确保控制指令不能中断,在浮点计算上功耗少。

相较于CPU,GPU的结构更为简单,基本上它也只做单精度或双精度浮点运算。GPU的运算速度更快,吞吐量也更高。

    • 响应方式不同

CPU基本上是实时响应,采用多级缓存来保障多个任务的响应速度。

GPU往往采用的是批处理的机制,即:任务先排好队,挨个处理。

图片

 

GPU对于图形处理

我们假设在实时渲染中,一帧1080*720P的图片,那么这张图就有大概777600个像素点。如果按照最基本的24帧/秒的帧率计算。1秒钟就要求计算机处理18662400个,即:1866.24万个像素点。

这还是高清的情况下,如果是1090*1080、2K、4K甚至8K的视频渲染,可想而知,这个计算量是何其巨大。尤其是在像游戏这样的实时渲染场景下,显然仅仅依靠CPU渲染是会超时的。

实际上,在屏幕中显示的三维物体都要经过多重的坐标变换,并且物体的表面会受到环境中各种光线的影响,呈现不同的颜色和阴影。这就包括了光线的漫射、折射、透射、散射等。

图片

 

接下来,我们以英伟达NVIDIA RTX3090 为例,看下GPU是如何进行渲染的。

RTX3090的流式多处理器有10496个,每个内核都有具备整数运算和浮点运算的部分,还有用于在操作数中排队和收集结果的部分。

所谓流式多处理器可以认为是一个独立的任务处理单元,也可以认为一颗GPU包含了10496个CPU同时处理各个图片处理任务。

图片

 

我们就可以通过算法和程序,对1秒钟18662400个像素点的整体任务进行切割分片,让10496颗处理器并行计算。

这样的话,每个处理器负责大概每秒处理18662400/10496,即1778个像素点的渲染任务就行了。

如下图所示,在GPU中会划分为多个流式处理区,每个处理区包含数百个内核,每个内核相当于一颗简化版的CPU,具备整数运算和浮点运算的功能,以及排队和结果收集功能。

图片

 

注意,除了流处理器CUDA以外,影响GPU性能的还有

      1. 核心频率:频率越高,性能越强、功耗也越高。

      2. 显示位宽:单位是bit,位宽决定了显卡同时可以处理的数据量,越大越好。

      3. 显存容量:显存容量越大,代表能缓存的数据就越多。

      4. 显存频率:单位是MHz或bps,显存频率越高,图形数据传输速度就越快。

总结

一言以蔽之,GPU不管是处理图形渲染、数值分析,还是处理AI推理。底层逻辑都是将极为繁重的数学进行任务拆解,化繁为简。

然后,利用GPU多流处理器的机制,将大量的运算拆解为一个个小的、简单的运算,并行处理。我们也可以认为一个GPU就是一个集群,里面每个流处理器都是一颗CPU,这样就容易理解了。

图片

 

以上是关于GPU概念、工作原理的简要介绍。说是简单,其实在图形处理方面,还有很多深层次的处理逻辑没有展开,比如像素位置变换、三角原理等等。感兴趣的小伙伴可以深入研究下。

 

Verified Market Research 数据显示,2020年,全球GPU市场规模为254.1亿美元,且该机构预计2028年市场规模将达到2465.1亿美元,对应年复合增长率达32.8%。国际独立GPU市场由Nvidia、AMD八二分成,国内市场中国企业体量快速增长。
国际市场上,英伟达、AMD瓜分市场,Jon Peddie Research数据显示2022Q1英伟达占据79%市场份额,AMD占据21%。英伟达在独立GPU领域一枝独秀,AMD在集成GPU领域可与英伟达竞争。
国内GPU龙头企业景嘉微2022年上半年营业收入5.44亿人民币,2021年营业收入10.93亿人民币;2022年上半年海光信息营业收入为25.3亿元,而英伟达2022Q2营收为67亿美元,2021年NVIDIA中国区的营收约为71亿美元。相比之下,国产厂商相对规模暂时较小,未来成长空间广阔。
GPU应用场景不断扩大拉动GPU市场空间迅猛增长,根据Verified Market Research预测,2027年中国GPU市场规模将会增长至345.57亿美元。 
GPU市场主要应用场景可概括为:AI&数据中心、智能汽车、游戏。

以下为报告原文,节选部分内容。

 

图片
图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。

本文链接:https://www.xckfsq.com/news/show.html?id=22011
赞同 0
评论 0 条
可口可乐L2
粉丝 0 发表 115 + 关注 私信
上周热门
银河麒麟添加网络打印机时,出现“client-error-not-possible”错误提示  1323
银河麒麟打印带有图像的文档时出错  1236
银河麒麟添加打印机时,出现“server-error-internal-error”  1023
统信桌面专业版【如何查询系统安装时间】  951
统信操作系统各版本介绍  944
统信桌面专业版【全盘安装UOS系统】介绍  903
麒麟系统也能完整体验微信啦!  889
统信【启动盘制作工具】使用介绍  499
统信桌面专业版【一个U盘做多个系统启动盘】的方法  441
信刻全自动档案蓝光光盘检测一体机  386
本周热议
我的信创开放社区兼职赚钱历程 40
今天你签到了吗? 27
信创开放社区邀请他人注册的具体步骤如下 15
如何玩转信创开放社区—从小白进阶到专家 15
方德桌面操作系统 14
我有15积分有什么用? 13
用抖音玩法闯信创开放社区——用平台宣传企业产品服务 13
如何让你先人一步获得悬赏问题信息?(创作者必看) 12
2024中国信创产业发展大会暨中国信息科技创新与应用博览会 9
中央国家机关政府采购中心:应当将CPU、操作系统符合安全可靠测评要求纳入采购需求 8

添加我为好友,拉您入交流群!

请使用微信扫一扫!