成功解决AttributeError: 'PathCollection' object has no property 'n_levels'
目录
AttributeError: 'PathCollection' object has no property 'n_levels'
属性错误:“PathCollection”对象没有属性“n_levels”
def scatter Found at: matplotlib.pyplot中并没有n_levels参数!很可能是代码写的有误,这个参数存在在中,如果必须使用n_levels参数,那么应该加到sns.kdeplot函数中,即可!
-
- def kdeplot Found at: seaborn.distributions
-
- -meta">@_deprecate_positional_args
- def kdeplot(
- x= Allow positional x, because behavior will not change with reorg
- None,
- *, y=None,
- shade= Note "soft" deprecation, explained below
- None, vertical= Deprecated
- False, kernel= Deprecated
- None, bw= Deprecated
- None, gridsize= TODO maybe depend on uni/bivariate?
- 200, cut=3, clip=None, legend=True, cumulative=False,
- shade_lowest= Deprecated, controlled with levels now
- None, cbar=False, cbar_ax=None, cbar_kws=None,
- ax=
- New params
- None, weights= TODO note that weights is grouped with
- semantics
- None, hue=None, palette=None, hue_order=None,
- hue_norm=None,
- multiple="layer", common_norm=True, common_grid=False,
- levels=10, thresh=.05,
- bw_method="scott", bw_adjust=1, log_scale=None,
- color=None, fill=
- Renamed params
- None, data=None, data2=None, **
- kwargs):
- Handle deprecation of `data2` as name for y variable
- if data2 is not None:
- y = data2
- If `data2` is present, we need to check for the `data` kwarg being
- used to pass a vector for `x`. We'll reassign the vectors and
- warn.
- We need this check because just passing a vector to `data` is
- now
- technically valid.
- x_passed_as_data = x is None and data is not None and np.ndim
- (data) == 1
- if x_passed_as_data:
- msg = "Use `x` and `y` rather than `data` `and `data2`"
- x = data
- else:
- msg = "The `data2` param is now named `y`; please update your
- code"
- warnings.warn(msg, FutureWarning)
- Handle deprecation of `vertical`
- if vertical:
- msg = "The `vertical` parameter is deprecated and will be
- removed in a "\
- "future version. Assign the data to the `y` variable instead."
- warnings.warn(msg, FutureWarning)
- x, y = y, x
- Handle deprecation of `bw`
- if bw is not None:
- msg = "The `bw` parameter is deprecated in favor of
- `bw_method` and "\
- f"`bw_adjust`. Using -subst">{bw} for `bw_method`, but please "\
- "see the docs for the new parameters and update your code."
- warnings.warn(msg, FutureWarning)
- bw_method = bw
- Handle deprecation of `kernel`
- if kernel is not None:
- msg = "Support for alternate kernels has been removed. "\
- "Using Gaussian kernel."
- warnings.warn(msg, UserWarning)
- Handle deprecation of shade_lowest
- if shade_lowest is not None:
- if shade_lowest:
- thresh = 0
- msg = "`shade_lowest` is now deprecated in favor of `thresh`. "\
- f"Setting `thresh=-subst">{thresh}`, but please update your code."
- warnings.warn(msg, UserWarning)
- Handle `n_levels`
- This was never in the formal API but it was processed, and
- appeared in an
- example. We can treat as an alias for `levels` now and deprecate
- later.
- levels = kwargs.pop("n_levels", levels)
- Handle "soft" deprecation of shade `shade` is not really the right
- terminology here, but unlike some of the other deprecated
- parameters it
- is probably very commonly used and much hard to remove. This
- is therefore
- going to be a longer process where, first, `fill` will be introduced
- and
- be used throughout the documentation. In 0.12, when kwarg-only
- enforcement hits, we can remove the shade/shade_lowest out of
- the
- function signature all together and pull them out of the kwargs.
- Then we
- can actually fire a FutureWarning, and eventually remove.
- if shade is not None:
- fill = shade
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- p = _DistributionPlotter(
- data=data,
- variables=_DistributionPlotter.get_semantics(locals()))
- p.map_hue(palette=palette, order=hue_order, norm=hue_norm)
- if ax is None:
- ax = plt.gca()
- Check for a specification that lacks x/y data and return early
- if not p.has_xy_data:
- return ax
- Pack the kwargs for statistics.KDE
- estimate_kws = dict(bw_method=bw_method,
- bw_adjust=bw_adjust,
- gridsize=gridsize,
- cut=cut,
- clip=clip,
- cumulative=cumulative)
- p._attach(ax, allowed_types=["numeric", "datetime"],
- log_scale=log_scale)
- if p.univariate:
- plot_kws = kwargs.copy()
- if color is not None:
- plot_kws["color"] = color
- p.plot_univariate_density(multiple=multiple,
- common_norm=common_norm, common_grid=common_grid,
- fill=fill, legend=legend, estimate_kws=estimate_kws, **plot_kws)
- else:
- p.plot_bivariate_density(common_norm=common_norm, fill=fill,
- levels=levels, thresh=thresh, legend=legend, color=color, cbar=cbar,
- cbar_ax=cbar_ax, cbar_kws=cbar_kws, estimate_kws=estimate_kws,
- **kwargs)
- return ax
网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。
添加我为好友,拉您入交流群!
请使用微信扫一扫!