Python之tensorboardX:tensorboardX库的简介、安装、使用方法之详细攻略
目录
tensorboardX是用简单的函数调用编写TensorBoard事件。
github文档:GitHub - lanpa/tensorboardX: tensorboard for pytorch (and chainer, mxnet, numpy, ...)
pip install tensorboardX==1.6
- demo.py
-
- import torch
- import torchvision.utils as vutils
- import numpy as np
- import torchvision.models as models
- from torchvision import datasets
- from tensorboardX import SummaryWriter
-
- resnet18 = models.resnet18(False)
- writer = SummaryWriter()
- sample_rate = 44100
- freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
-
- for n_iter in range(100):
-
- dummy_s1 = torch.rand(1)
- dummy_s2 = torch.rand(1)
- data grouping by `slash`
- writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
- writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)
-
- writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
- 'xcosx': n_iter * np.cos(n_iter),
- 'arctanx': np.arctan(n_iter)}, n_iter)
-
- dummy_img = torch.rand(32, 3, 64, 64) output from network
- if n_iter % 10 == 0:
- x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
- writer.add_image('Image', x, n_iter)
-
- dummy_audio = torch.zeros(sample_rate * 2)
- for i in range(x.size(0)):
- amplitude of sound should in [-1, 1]
- dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
- writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)
-
- writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
-
- for name, param in resnet18.named_parameters():
- writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)
-
- needs tensorboard 0.4RC or later
- writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)
-
- dataset = datasets.MNIST('mnist', train=False, download=True)
- images = dataset.test_data[:100].float()
- label = dataset.test_labels[:100]
-
- features = images.view(100, 784)
- writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))
-
- export scalar data to JSON for external processing
- writer.export_scalars_to_json("./all_scalars.json")
- writer.close()
网站声明:如果转载,请联系本站管理员。否则一切后果自行承担。
添加我为好友,拉您入交流群!
请使用微信扫一扫!